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Creation of a gene expression 
portrait of depression and its 
application for identifying potential 
treatments
Stephen C. Gammie

Depression is a complex mental health disorder and the goal here was to identify a consistent 
underlying portrait of expression that ranks all genes from most to least dysregulated and indicates 
direction of change relative to controls. Using large-scale neural gene expression depression datasets, 
a combined portrait (for men and women) was created along with one for men and one for women 
only. The depressed brain was characterized by a “hypo” state, that included downregulation of 
activity-related genes, including EGR1, FOS, and ARC, and indications of a lower brain temperature 
and sleep-like state. MAP kinase and BDNF pathways were enriched with overlapping genes. 
Expression patterns suggested decreased signaling for GABA and for neuropeptides, CRH, SST, and 
CCK. GWAS depression genes were among depression portrait genes and common genes of interest 
included SPRY2 and PSEN2. The portraits were used with the drug repurposing approach of signature 
matching to identify treatments that could reverse depression gene expression patterns. Exercise 
was identified as the top treatment for depression for the combined and male portraits. Other non-
traditional treatments that scored well were: curcumin, creatine, and albiflorin. Fluoxetine scored best 
among typical antidepressants. The creation of the portraits of depression provides new insights into 
the complex landscape of depression and a novel platform for evaluating and identifying potential 
new treatments.

Disorders of the nervous system in humans, such as depression, are complicated, difficult to study, and difficult to 
treat. One inherent complexity of human nervous system disorders is that a typical person has about 80+ billion 
neurons (and similar number of glial cells)1 and most of the more than 20,000 protein coding genes are expressed 
in the brain2. Further, thousands of genes can exhibit altered expression for a given disorder when analyzing 
large-scale gene expression patterns in the brain taken postmortem from disorder and control individuals3,4. 
For major depressive disorder (MDD), multiple large-scale gene expression studies have been performed4–9, 
but a question that remains is whether there is a consistent signature of upregulated and downregulated genes 
across brain regions relative to controls10. In support of a pattern, a recent study of a subset of MDD expression 
datasets identified a consistent expression pattern for genes in the MAP kinase pathway that were altered with 
depression4. The goal of the present study was to take advantage of numerous large-scale gene expression stud-
ies and bioinformatics approaches to (1) create a gene expression portrait of depression that ranks the most to 
least dysregulated genes along with the direction of change and (2) use the gene expression portraits and drug 
repurposing tools to identify potential treatments for depression.

First, I make use of 29 publicly available large-scale gene expression datasets to create a portrait of depression 
that models more completely the exceptionally complex gene expression landscape that underlies this disorder. 
The critical component of the portrait is that it emphasizes consistent findings while penalizing inconsistent 
findings such that core components of depression expression can emerge. Given that there are sex differences for 
most disorders, in addition to a combined portrait, separate portraits for men and women were also created. Each 
gene expression portrait contains a ranking of all genes from most to least dysregulated along with the direction of 
change relative to non-depressed controls. With these I examine the basis of depression using enrichment analysis 
and gene network analysis. I also evaluate the portraits in association with results from recent GWAS studies on 
depression and evaluate similarities and differences in the male and female depression profiles. Comparisons to 
a similar approach that emphasizes parameters differently11 is also provided.
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Second, I use the gene expression portraits to identify potential treatments for depression. I use the drug 
repurposing approach of signature matching and the premise that if one knows the direction of change of gene 
expression in a disorder and one knows the direction of gene expression change produced by a treatment, then 
one can identify treatments that move expression of the genes in the disorder back to the normal state12,13. In 
other words, the treatment reverses the expression pattern of the disorder. This approach has been validated using 
multiple datasets of clinically effective treatments along with tissues sets from related disorders14 and has been 
used successfully to identify new treatments for a range of disorders15–17. However, a caveat is that for a given 
disorder it is not known whether a reversal of gene expression patterns would necessarily lead to treatment and 
the approach here for depression is meant to be exploratory. For this analysis, I only evaluated gene expression 
datasets that were performed examining effects of treatments in the brain or related tissue (e.g., neuronal stem 
cells) across a range of species. Together, I curated and evaluated over 200 gene expression treatment datasets 
and compared these with the three gene expression portraits of depression. I rank these treatments for potential 
reversal of depression expression patterns.

Results
The full list for each portrait with a ranking of all genes from most to least dysregulated with depression along 
with information on direction of expression change (up in depression = positive sign, down in depression = nega-
tive sign) is provided in Supplementary Table 1. Supplementary Fig. 1 provides an overview of the creation of the 
portraits. Two approaches were used to evaluate how well the portraits provide a consistent biological signature 
of depression. In the first, I examined how well each portrait captured the patterns of the original individual 
datasets, including those used to create the portrait and those not. Using a rank rank hypergeometric approach, 
the combined portrait matched well both datasets used and not used in its creation (see Supplementary Figs. 2 
and 3 and Supplementary Table 1 for details). The male and female portraits best matched male and female 
datasets, respectively.

The second approach involved creation of a new combined portrait based on fewer than half of the datasets, 
but where each was independent from one another in terms of individuals. Then, each of these datasets was 
randomized to create a new randomly based portrait (see “Methods” for details) and this process was repeated 10 
times. The average matching score of the new depression portrait back to its starting datasets was 166.6, while the 
random average matching was only 130.3 (p value < 0.05) (Supplementary Table 1), suggesting that a biological 
pattern is present in the depression datasets. Finally, when looking within the new depression portrait, the aver-
age score for matching downregulated genes (90.4) was higher than for matching upregulated genes (76.2), but it 
was similar in the random control (65.2 versus 64.6), suggesting a hallmark of depression is a greater consistent 
downregulation relative to the consistent upregulation of certain genes (Supplementary Table 1).

Analysis of genetic findings in the portraits of depression.  The top dysregulated genes in the com-
bined portrait of depression (Supplementary Table 1) were consistent with a state of low activity or a “hypo” 
state. For example, the top gene is the downregulation of EGR1, an immediate early gene, but this is not the only 
immediate early gene with significant downregulation. Others include FOS, FOSL2, FOSB, EGR2, EGR3, EGR4, 
and JUNB within the top 1000 genes. These genes are reflective of neuronal activity and this collection of down-
regulated activity genes suggests a state of lowered neuronal activity. Additional genes that reflect cell activity are 
ARC and the three nuclear receptors from the NR4A family (NR4A1, NR4A2, and NR4A3); these are all down-
regulated. The idea of “hypo” also extends to some key neuropeptides. For example, downregulation of cortico-
tropin releasing hormone (CRH) is the 6th most dysregulated gene. Other neuropeptides with lower expression 
in depression are somatostatin (SST) and cholecystokinin (CCK). The glucocorticoid receptor, NR3C1, is also 
downregulated. One of the enzymes involved in GABA synthesis, GAD2, is significantly downregulated.

Expression patterns of a number of genes suggest a low temperature and/or sleep state with depression. For 
example, Cold Inducible RNA Binding Protein, CIRBP, is upregulated in the combined portrait and expression 
of this gene is elevated by lower temperatures and is higher during sleep; it also regulates expression of multiple 
circadian rhythm genes, including NR1D1. The circadian related gene, NR1D1, is also upregulated. Consistent 
with a lower CNS temperature, in the top 1000 genes five of five heat shock proteins are downregulated.

Various neurotransmitter receptors were among the top 1000 combined portrait genes, including the GABA 
B receptor, GABBR1 (downregulated), the GABA A receptor subunit, GABRA1 (downregulated), the purinergic 
receptor, P2RX7 (upregulated), the serotonin receptor, HTR2C (downregulated), subunits of the ionotropic glu-
tamate receptor, GRIK2 and GRIK5 (both downregulated), and the mu opioid receptor, OPRM1 (upregulated).

The combined depression portrait also includes a number of dysregulated genes (mostly downregulated) 
involved in the MAP kinase signaling pathway (which has also been strongly implicated in depression, see discus-
sion). Enrichment analysis (e.g., using STRING18 or ToppCluster19 or Enrichr20) of the top 1000 depression genes 
indicated enrichment for the MAP kinase pathway and genes included five DUSP genes (e.g., DUSP1, DUSP6), 
four map kinase genes (e.g., MAP2K5, MAPK8), four SPRY genes (e.g., SPRY2, SPRY4), along with SPRED1 
and SPRED2 (Fig. 1). Brain derived neurotrophic factor (BDNF), also implicated in depression (see below), is 
down regulated in the combined portrait (the 164th most dysregulated gene). Given that BDNF and MAP kinase 
signaling pathways intersect with one another and that both signaling pathways were enriched among the top 
1000 dysregulated genes, the interaction of genes in the two pathways was examined using STRING, the protein 
interaction network. As shown in Fig. 1, genes in the two pathways are highly interactive with one another and 
a subset are part of the overlap of BDNF and MAP kinase pathways, including BDNF, DUSP1, DUSP4, DUSP5, 
FOS, NR4A1, VEGFA, and two heatshock proteins. VEGFA is of interest as it is implicated in depression and 
can use the MAP kinase pathway.
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Enrichment analysis also identified general protein kinase activity, regulation of transferase activity, syn-
aptic signaling, neuron development, RNA catabolic process, and viral transcription being among pathways 
significantly enriched in the top 1000 genes in the combined portrait. Enrichment results from ToppCluster are 
provided for the top 1000 genes for each portrait in Supplementary Table 1. Using Enrichr and BioPlanet 2019 
for enrichment analysis of the top 1000 dysregulated genes, the top five matches were: BDNF signaling pathway 
(53 genes matching), MAP kinase pathway, cytoplasmic ribosomal proteins, coenzyme A biosynthesis, influenza 
viral RNA transcription, and translation.

When examining the top 1000 dysregulated genes, just over half, 527, were downregulated in males com-
pared to 594 downregulated genes in females. The male and female portraits have positive matching scores when 

Figure 1.   BDNF and MAP kinase pathways in combined portrait of depression. Genes enriched for BDNF 
signaling (blue circles) and MAP kinase pathway (red circles) were enriched among the top 1000 dysregulated 
genes in the combined portrait. Further, a subset of genes is in both pathways (yellow circles), including BDNF, 
DUSP1, DUSP4, DUSP5, FOS, MAP2K5, MAPK8, NR4A1, and two heatshock proteins. Plotting of gene 
interactions in STRING (version 11)18 highlights gene–gene interactions (lines).
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comparing the top 1000 upregulated and top 1000 downregulated genes in both portraits (see Supplementary 
Table 1). However, a subset of genes is dysregulated in opposite directions. 87 genes upregulated in males (top 
1000 up) are downregulated in females (top 1000 down). Further, 81 genes downregulated in males (top 1000 
down) are upregulated in females (top 1000 up) (Supplementary Table 1). Some neuronal signaling genes of 
interest include the serotonin receptor, HTR2A, and subunits of the ionotropic glutamate receptor, GRIN2A and 
GRIA2; all downregulated in males and upregulated in females. Enrichment for genes divergent in the sexes was 
found for both immune response (including C1QB and C1QC) and translation, but otherwise no clear patterns 
of enrichment were found. Figure 2 provides a plotting in STRING of a subset of genes moving in opposing 
directions in male and female portraits.

When comparing 268 GWAS genes associated with MDD from a recent study21 to the top 1000 portrait genes, 
14 common genes were: SPRY2, ELAV2, CELF2, FADS2, FNIP2, ZC3H7B, PSEN2, BAZ2B, SORBS3, FANCL, 
ZNF184, PHF2, SGIP1, and CSMD1. The hypergeometric overlap of these two lists was not significant. For an 
additional analysis of GWAS and gene expression results, the top GWAS genes that interacted with one another 
(n = 53; identified via STRING analysis) and top portrait genes that interacted with one another (n = 123; also 
identified via STRING) were plotted together in STRING and included the common 14 genes. As shown in 
Fig. 3, the top GWAS and portrait genes show high interactions with one another, suggesting a possible connec-
tion of GWAS to expression outcomes. GWAS genes with high levels of interactions with expression genes were 
the histone acetyltransferase, EP300, the Rho GTPase, RHOA, the heat shock protein, HSPA1A, the dopamine 
receptor, DRD2, the glutamate receptor, GRM5, the huntington gene, HTT, and the estrogen receptor, ESR2. 
Among these highly interactive genes, enrichment included MAP kinase signaling, RNA catabolic process, and 
neuron development.

Use of depression portraits to identify potential treatments.  The portraits of depression were used 
with drug repurposing approaches to identify and evaluate potential new treatments for depression (Supplemen-
tary Fig. 4). Only datasets were used for analysis that were derived from the nervous system and this step was 
important because the treatment needs to reverse a brain pattern. The full list of treatments and matches to each 
of the three portraits is provided in Supplementary Table 2. Figure 4 provides the top 20 matches to each of the 
portraits. Overall, the top two scoring treatments for the combined portrait were exercise and these treatment 
data came from human CNS comparing individuals with high versus low or medium lifetime activity (Fig. 4; 
Supplementary Table 2). The antidepressant, fluoxetine, had eight datasets among the top 20 ranked treatments, 
including the third overall treatment. Curcumin, the plant chemical from Turmeric, was the ninth ranked treat-
ment (Fig. 4).

When examining known antidepressants, in addition to fluoxetine, other highly ranked antidepressants in 
order were desipramine, imipramine, venlafaxine, and ketamine. When examining potential novel antidepres-
sants, in addition to exercise and curcumin, some of the top 50 treatments were elevated temperature, D-serine, 
albiflorin, creatine, alpha and gamma tocopherol, and nicotinamide riboside (Supplementary Table 2). Additional 
potential treatments were pioglitazone, celastrol, and zinc. A summary of the top 20 potential new treatments 
for each portrait is provided in Supplementary Fig. 5.

For drugs of abuse that could be construed as a form of self-medication, the top scoring drugs included 
heroin, cocaine, methamphetamine, and morphine and these were among the top 20 treatments (Fig. 4). Among 
the top 50 treatments were also MDMA, and alcohol. Among known toxins that ranked highly were deltamethrin 
and chlorpyrifos. Only two hormones were among the top 50 treatments and these were corticosterone and thy-
roid hormone and neither of these were among the top 30 treatments. The only antianxiety treatment, diazepam, 
had almost no net effect on altering expression patterns in depression in a given positive or negative direction.

In order to examine more closely how exercise may reverse the combined portrait depression patterns, over-
lapping genes from the top two human datasets and the combined portrait were plotted in STRING and enrich-
ment for neurogenesis, CNS development, and MAP kinase signaling were found (Fig. 5). Although BDNF was 
upregulated by exercise, it was not within the cutoff used and is not plotted. As an additional approach, I created 
a heatmap of how exercise interacted with each portrait using the Rank Rank Hypergoemetric Overlap (RRHO) 
approach22 (Fig. 6). For each portrait, exercise strongly reversed downregulated genes in depression (lower right 
hand portion of each box) and this extended beyond the top 1000 upregulated and 1000 downregulated genes.

I also created RRHO heat maps for some of the other combined portrait top treatment performers, including 
curcumin, fluoxetine, albiflorin, creatine, elevated temperature, and nicotinamide riboside (Fig. 7). While each 
treatment reverses downregulated genes in depression (lower right hand quadrant of each box), albiflorin also 
shows a signature of reversing upregulated genes in depression. As in the case of exercise, the treatments shown 
indicate effects that occur outside of the top 1000 up and 1000 downregulated genes.

For the male portrait, the top treatment was exercise (Fig. 4, Supplementary Table 2). Among the top 10 
treatments were curcumin, venlafaxine, and fluoxetine. When focusing on known antidepressants, nine of the 
top 50 datasets were for fluoxetine, but desipramine and imipramine also scored highly and were among the 
top 50 treatments.

For males, when examining potential novel antidepressants, among the top 50 and in order were exercise, 
curcumin, creatine, alpha tocopherol with vitamin E, albiflorin, nicotinamide riboside, D-serine, aminolevulinic, 
and zinc (Supplementary Fig. 5). For drugs of abuse, top scorers were heroin, cocaine, and MDMA (all among the 
top 10), morphine, alcohol, methamphetamine, methylphenidate, nicotine, and amphetamine (all these among 
the top 50) (Supplementary Table 2). Three toxins among the top 50 treatments were permethrin, streptozocin, 
and chlorpyrifos. For hormones, only corticosterone and dexamethasone were among the top 50.

For the female portrait, the top scoring treatment was related to cocaine dependence, but D-serine was the 
second and third ranked treatment (for two different doses) (Fig. 4, Supplementary Table 2). Fluoxetine was 
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also highly ranked (fifth overall). With a focus on antidepressants, ten of the top 50 treatments were fluoxetine. 
Ketamine had three entries in the top 50 (the highest at 14th) and this contrasted with the combined portrait 

Figure 2.   Sex differences in male and female portraits of depression. While overall there was a positive match 
of the male and female portraits, a subset of genes moved consistently in opposite directions when comparing 
the top 1000 genes upregulated and top 1000 genes downregulated in both portraits. These opposing direction 
genes are plotted in STRING (version 11)18 that highlights gene–gene interactions. Two areas of enrichment are 
immune response (red circles) and translation (blue circles). Some neuronal signaling genes of interest include 
the serotonin receptor, HTR2A, and subunits of the ionotropic glutamate receptor, GRIN2A and GRIA2; all 
downregulated in males and upregulated in females (yellow circles).
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and male portrait where none of the top 50 treatments were ketamine. For females, also among the top 50 were 
desipramine and imipramine.

For females in terms of potential novel antidepressants, among the top 50 were: D-serine (three different 
doses), albiflorin, exercise, nicotinamide riboside, resveratrol, and curcumin. For drugs of abuse, among the 
top 50 were cocaine (1st overall), methamphetamine, amphetamine, and MDMA. The toxins deltamethrin (4th 
overall), permethrin, diethylstilbestrol, chlorpyrifos, bexorotene and bisphenol A were among the top 50. For 
hormones, corticosterone and thyroid hormone were among the top 50 (Supplementary Table 2).

Uniform Manifold Approximation and Projection (UMAP)23 was used as an alternative approach to gain 
insights into which treatments may best treat depression as it incorporates the complex landscape of multidi-
mensional features and flattens those to two dimensions. The sign for the portraits were reversed so that if a 
treatment perfectly reversed all gene expression aspects for a portrait, then it will now perfectly match (be close 
spatially to) the reversed signed portrait. As shown in Fig. 8, a subset of fluoxetine datasets are close spatially 
with the three portraits. Among the top novel antidepressants that most consistently matched (were capable of 
reversing) depression was exercise (in humans).

Figure 3.   Intersection of GWAS depression and combined portrait depression genes. An interaction of genes 
from a recent GWAS analysis of depression (red circles) are plotted in STRING (version 11)18 with genes from 
the combined depression portrait (green circles). Genes in common from the GWAS and the top 1000 portrait 
genes are shown in blue circles. Steps for identifying top interacting genes are provided in the “Methods”. 
Strength of connection between genes is shown by thickness of lines.
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Evaluation of an alternative approach for developing a portrait.  The current portrait represents 
one approach and an alternative portrait was created using MetaVolcano. There was significant overlap between 
MetaVolcano and the present result, but differences likely arose due to differences in approach described in the 
“Methods” section. The output is provided in Supplementary Table 1. Further, the MetaVolcano portrait was also 
used to identify potential treatments and those results are presented in Supplementary Table 2. Of interest, the 
top two treatments were also exercise.

Discussion
The portrait for depression provides a specific model of a complex gene expression landscape (not just a change 
in one specific gene) and as a model, it can be tested, challenged, refined, or even replaced. If valid, then the 
portrait can improve our understanding of what comprises the core of depression and how depression differs in 
men and women. It also can provide a new metric for evaluating and improving treatments.

One interpretation of the combined portrait of depression is that it is in a “hypo” (i.e., deficient or below 
normal) state. Numerous immediate early genes that are commonly expressed during neuronal activity were 
down regulated in association with depression, including the top dysregulated gene, EGR1. Other downregulated 
immediate early genes include FOS, FOSL2, FOSB, EGR2, EGR3, EGR4, and JUNB. Also consistent with a “hypo” 
state is the downregulation of the three nuclear receptors from the NR4A family (NR4A1, NR4A2, and NR4A3) 
that are normally upregulated by activity24–26. The activity related gene, ARC​27, had lower expression as well. This 
lowered expression of activity-related genes is consistent with the standard, non-medical term depression which 
is defined as a lower amount or level than usual. Clinically, the Diagnostic and Statistical Manual for Mental 

Figure 4.   Top overall treatments for each portrait of depression. The top 20 treatments are shown for each 
portrait. Treatments were placed in one of the following color-coded categories: known antidepressant (light 
blue); potential new antidepressant (green); drugs of abuse with implications for possible self-medication 
(red); known toxin, but possible benefit (purple); and hormone (yellow). GEO numbers are provided, but 
see Supplementary Table 2 for details on comparison made and study. Exercise (data derived from a study in 
humans) was the top treatment for both the combined and male portraits of depression. Abbreviations are: 
methamphet. (methamphetamine); a & g tocoph (alpha and gamma tocopherol with vitamin E); diethylstilb. 
(diethylstilbestrol), corticost. (corticosterone).
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Disorders: DSM-5 (DSM) for MDD includes multiple criteria, one being ‘fatigue or loss of energy nearly every 
day’28. It is possible that reduced cellular activity could reflect or trigger this state.

The decreased markers of activity are not the only indicators of a “hypo” state. Among the top downregulated 
genes are also neuropeptides known to have a connection to depression or mood state. Among these, corticotro-
pin releasing hormone (CRH), the sixth most dysregulated gene, is of interest because higher levels of release are 
associated with anxiety and arousal and it is known to have a nonlinear effect on behavior when acting among 
multiple receptors29–32. Here, the notable downregulation of CRH suggests a state not necessarily of anxiety, but 
of low arousal that would be consistent with the DSM criteria of ‘diminished ability to think or concentrate’28. 
Another notable downregulated neuropeptide is somatostatin (SST) that also has been associated strongly with 
mood and depression33. SST often colocalizes with the neurotransmitter, GABA34, and one of the enzymes that 
produces GABA (GAD2) is also downregulated.

Figure 5.   Plotting of genes regulated by exercise that reverse patterns of gene expression in depression. Genes 
from the top two human datasets that reverse patterns of depression in the combined portrait of depression were 
plotted in STRING (version 11)18 (gene–gene interactions are shown by lines). Enrichment for neurogenesis 
(blue circles), CNS development (red circles), and MAP kinase signaling (green circles) was found.
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Patterns of gene dysregulation consistent with a “hypo” state were found for genes involved in temperature 
and sleep. The cold inducible gene, CIRBP, is upregulated and most of the dysregulated heat shock proteins are 
downregulated. Together, these suggest a CNS with a lower than normal temperature and would be consistent 
with the lowered expression of genes for neuronal activity, such as EGR1 and FOS. CIRBP normally shows daily 
circadian expression changes with highest levels during sleep and it regulates circadian rhythm genes, including 
NR1D135, which is also upregulated in the combined portrait. Together, these suggest a potential sleep-like state 
in depression, which is consistent with the DSM criteria for depression of hypersomnia or insomnia. It should 
be noted that the elevated CIRBP in the combined portrait is driven more by the male datasets, but in females, 
NR1D1 is also strongly upregulated and the consistent downregulation of heat shock proteins is also found 

Figure 6.   RRHO heat maps of exercise and the portraits of depression. RRHO heat maps22 for comparisons 
of exercise (human dataset) with the three portraits are shown. Y axis is exercise and X axis is for portrait. For 
each map, the match of direction is shown by the inset. For example, up in exercise and down in depression is 
the lower right quadrant. Color is –log transformed hypergeometric p value showing the strength of the overlap 
as positive or negative enrichment. In each case there is a high reversal of downregulated depression genes by 
exercise (blue in lower right quadrant), but in females there are also a subset of genes (red in lower left hand 
quadrant) that are up in depression and pushed up by exercise. All genes are used in RRHO analysis and profile 
of upregulated genes are shown in red and downregulated genes shown in blue in the axis for each comparison. 
Images were made using the web based tool of RRHO22. While the current study focusses on the top 1000 
upregulated and top 1000 downregulated genes, the mapping here suggests genes outside of this range could be 
involved in beneficial effects of exercise.
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Figure 7.   RRHO heat maps of various treatments and the combined portrait of depression. RRHO heat maps22 
for comparisons of curcumin, fluoxetine, albiflorin, creatine, elevated temperature, and nicotinamide riboside 
compared to the combined portrait of depression are shown. Y axis is treatment and X axis is for depression 
portrait. Images were made using the web based tool of RRHO22. Details on the axes and colors are same as in 
Fig. 6. In each case there is a high reversal of downregulated depression genes with the various treatments (blue 
in lower right hand quadrant), but there are difference in how well each treatment reverses upregulated genes in 
depression (upper left hand quadrant).
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Figure 8.   UMAP plotting of treatments with depression portraits. UMAP23 was used to incorporate data from complex 
landscape of multidimensional features (4020 genes) and flatten those to two dimensions to identify similarities between 
datasets. The sign for the portraits was reversed so that a closer distance (spatial proximity) of a treatment to a portrait 
represents a better match (reversal of pattern). Plot represents higher dimension data plotted into two dimensions. The x‐ and 
y‐axes are arbitrary embedding dimensions generated by UMAP. Top graph is from plotting using the neighborhood setting 
of 20 and lower graph is setting of 49. Overall, the portraits were most consistently matched with fluoxetine and exercise. 
Colored dots are: green, portraits; red, fluoxetine, brown, exercise (human), purple, drugs of abuse, light green other new 
treatments, and light yellow, other antidepressants.
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in females. Consistent with this finding, recent studies have suggested elevation of temperature as a potential 
anti-depression therapy36 and it was of interest that elevated temperature in a lactating model was found to have 
antidepressant gene expression effects.

The glucocorticoid receptor, NR3C1, was also downregulated and this would support the idea of a lower 
energy state or low arousal as this receptor is activated in a daily rhythm during the transition from sleeping 
to waking37. Further, lower glucocorticoid receptor expression is consistent with a role for this receptor in the 
dexamethasone suppression test that can be used to help identify depression38.

In terms of neurotransmitter receptors, the GABA B receptor, GABBR1, was downregulated as was a subunit 
of the GABA A receptor, GABRA1. The glutamate receptor subunits, GRIK2 and GRIK5, the purinergic receptor, 
P2RX7, and the somatostatin receptor, SSTR2, were also downregulated, but the mu opioid receptor, OPRM1, 
was upregulated. OPRM1 has previously been linked to depression39. Higher OPRM1 against a backdrop of lower 
neuronal activity could indicate the CNS is poised for, but not getting reward related inputs.

Decreased serotonin signaling has been posited as a contributor to depression40 and the serotonin recep-
tor, HTR2C, which has been connected to depression41, is downregulated in the combined portrait (680th 
most dysregulated gene). The drug, lorcaserin, targets this receptor and is used for weight loss and addiction 
treatments42, but treatment effects in depression are not known. No lorcaserin expression datasets were avail-
able for analysis, so its potential as potential antidepressant could not be evaluated here. One of the enzymes 
for producing serotonin, TPH2, is upregulated (1197th most dysregulated), but this does not indicate whether 
actual release of serotonin is elevated.

The role of BDNF in depression is actively studied43,44 and BDNF was the 164th most dysregulated gene in 
the combined portrait. BDNF is downregulated in depression and the BDNF signaling pathway was signifi-
cantly enriched in the combined portrait (Fig. 1). Thus, not just BDNF, but related genes are dysregulated in 
the depression portrait and identification of these associated genes can improve our understanding of how this 
pathway is disrupted. The BDNF pathway intersects with the MAP kinase signaling pathway as detailed in the 
KEGG pathways45. The MAP kinase pathway is also dysregulated in depression4,46,47. MAP kinase signaling was 
significantly enriched in the combined portrait and Fig. 1 provides a protein interaction map of dysregulated 
genes that are related to BDNF and/or MAP kinase. This intersection map from the combined portrait provides 
a more complex picture of these intersecting pathways in depression than past studies.

As shown in Fig. 3, top genes from a recent GWAS survey of MDD21 were found among the top dysregulated 
portrait genes and a number of GWAS and portrait genes interact with one another. Further, for these genes, 
enrichment for MAP kinase and neuron development was found. Among interesting GWAS genes is SPRY2, 
which is part of the MAP kinase pathway. Further, PSEN2 is noteworthy as it is linked to Alzheimer’s disease and 
there is an emerging interest in intersections of depression and dementia48. In the depression portrait, PSEN2 is 
downregulate while PSEN1 is upregulated. Among GWAS genes that interacted the most with depression portrait 
genes were the histone acetyltransferase, EP300, the Rho GTPase, RHOA, the heat shock protein HSPA1A, the 
dopamine receptor, DRD2, the glutamate receptor, GRM5, the huntington gene, HTT, and the estrogen recep-
tor, ESR2. Whether or how putative GWAS depression genes interact with or cause gene expression changes in 
depression is still to be determined.

Out of over 200 depression treatment datasets, exercise was the top rated treatment in the combined and male 
portrait. The dataset for exercise came from a recent study examining hippocampal gene expression in elderly 
with known high exercise relative to moderate exercise (top ranked treatment) and versus low activity (second 
ranked treatment)49. RRHO heat map analysis suggested exercise would also advantageously affect genes outside 
of the top 1000 dysregulated portrait genes (Fig. 6). Using UMAP as an alternative approach to identify the best 
treatments, exercise again stood out as a promising treatment (Fig. 8). Additionally, exercise ranked highly when 
examining datasets from rodent models, such as gene expression in the hippocampus in mice with access to a 
running wheel (33rd ranked top treatment)50. A connection between exercise and increased BDNF as part of the 
antidepressant aspects of exercise have been evaluated51. While BDNF is elevated in both of the human exercise 
datasets, it is not within the cutoff used, so it is not one of the genes matching the portrait datasets. However, for 
the mouse exercise datasets, BDNF increases are within the cutoff and do match the portraits. The interaction 
of exercise with depression is complex with apparent contributions of multiple genes in the BDNF and MAP 
kinase pathways (Fig. 5).

Some of the top ranked non-traditional treatments for depression were of interest because prior work had 
suggested them as possible antidepressants. For example, D-serine (second highest for females)52, curcumin53, 
creatine54, elevated temperature55, albiflorin56,57, alpha and gamma tocopherol with vitamin E58, nicotinamide 
riboside59, aminolevulinic acid60, celastrol61, and zinc62 each have been evaluated in some context as a possible 
treatment for depression. The datasets for D-serine included an unusually high ratio of upregulated relative 
to downregulated genes overall63, though, so additional caution may be needed when interpreting that result.

Hormones that scored well were cortisol and thyroid hormone. Levels of both cortisol64 and thyroid 
hormone65 have been linked to depression, so it is not surprising that increases of these hormones in certain 
contexts would reflect a beneficial treatment effect.

The finding that some drugs of abuse scored highly for reversal of depression patterns is consistent with the 
idea that in some cases, use of addictive drugs is a form of self-medication66. For example, if a drug is altering 
patterns of gene expression that push patterns in a depressed individual towards normal and this alleviates 
depression, then it is possible the addictive drug would have both the typical reward but also reward in the form 
of alleviation of symptoms. For the female depression portrait, cocaine dependence67 was the top treatment. Also, 
when examining the genes affected by cocaine, many were related to cellular activity. Drugs of abuse are not 
suggested as a possible treatment for depression, but an understanding of how they might interact with depres-
sion opens the possibility of targeting specific pathways in developing new treatments. Similarly, some of the 
treatments with possible antidepressant actions, such as deltamethrin, are known to have toxic effects68. Similar 
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to drugs of abuse, it is not suggested a potential toxin be taken as a treatment, but by examining how these types 
of chemicals could potentially reverse aspects of depression could open new lines of treatments.

The scoring system used allows one to identify possible treatments for depression that could make things 
worse, namely by pushing expression patterns in the same direction as in depression. For antipsychotics, while 
some ranked among the top 50 for treatments, many were found to have adverse effects. For example, for the 
combined portrait, haloperidol and clozapine had seven entries for these drugs in the bottom 50 treatments 
(most adverse effect on expression), including the worst (clozapine) and second worst (haloperidol) treatments. 
Interestingly, the one clozapine study showing a positive antidepressant effect was performed on a HDAC2 
knockout in forebrain neurons mouse line69, suggesting potential beneficial effects of this antipsychotic may be 
dependent on the genotype.

Fluoxetine was the best performing traditional antidepressant, but multiple others, including desipramine and 
imipramine also scored well. Ketamine treatment had mostly positive effect in females, but not in males or the 
combined portrait. A limitation for the ketamine datasets was they were based on a single injection approach70. 
No studies available examined long term effects of ketamine treatment and thus comparisons to other studies 
on antidepressants using chronic long term treatment are not available.

The depression portraits for males and females had large consistent overlaps of genes in the same direction, 
but had a subset of genes that are significantly dysregulated in opposite directions. Among notable receptors, 
the serotonin receptor, HTR2A, and the glutamate receptor, GRIN2A, were both upregulated in females and 
downregulated in males. Enrichment of genes for translation and for the immune system (e.g., C1QB and C1QC) 
were identified (Fig. 2). The sex differences in C1QB and C1QC are of interest as they have been implicated as 
central hubs of gene expression in the hippocampus with depression71. Otherwise, no additional clear enrich-
ment pattern was found for genes dysregulated in males and females with depression in opposite directions. The 
finding of sex differences in depression is consistent with previous work4.

One limitation for evaluating sex differences in response to treatments is that the majority of the treatment 
datasets were performed in males and this could make treatments appear to work better in males. Given this 
major and possibly explanatory caveat, a general finding was that when comparing the top most effective treat-
ments between males and females, the magnitude of reversal (overall score) was lower in females suggesting that 
the specific gene landscape in depression is harder to treat in women. Differences in response to treatments have 
been observed between men and women with depression72,73. However, without more treatment datasets bal-
anced equally between the sexes, it is hard to substantiate sex differences here in terms of response to treatments.

There was a high concordance between the present approach and MetaVolcano results. For example, all activ-
ity related genes were found in both approaches in the top 1000 genes. Differences likely reflected differences in 
approach as detailed in the “Methods” section. The use of multiple approaches to establish a portrait is valuable 
and a consensus on how to best create a portrait will likely only come with future studies and analysis.

The current study provides a portrait of depression and holds the promise of providing a more complete 
understanding of the basis of depression while also providing a tool for identifying and developing new treat-
ment approaches. However, the portrait of depression has limitations and the following is a list of limitations 
and future directions intertwined.

1)	 While the approach used highlights consistent gene expression patterns in depression, it is difficult to untan-
gle the cause from effect and likely there is an interaction of both. For example, dysregulation of some genes 
may be causative, some may be in response to depression, and others may be working to oppose those effects 
and thus be neuroprotective. Further, the underlying datasets include data from individuals with different 
possible life histories including exposure to antidepressants and/or drugs of abuse that in turn can affect gene 
expression. This concerns is mitigated somewhat by the approach of highlighting consistent changes with 
depression and discounting inconsistent changes that may occur to different life history events. In the future, 
it will be valuable to try to evaluate which gene patterns are the most causative, which may be a response to 
depression, and which (if any) may seem like a dysregulation but are neuroprotective.

2)	 The combined portrait is likely to be the most robust as it incorporates data from males, females, and mixed 
cohorts. The male and female portraits are valuable, but because they will always be built from less data, it is 
worth adding extra caution here and in future studies. Further, multiple cutoff decision points were used in 
creating the model and it is possible there are better ways for weighting genes. While the addition of future 
human datasets will improve the model, we should also work to improve and evaluate multiple approaches, 
including MetaVolcano, for developing the portrait. Additionally, the portraits were built from different 
brain regions that include a mixture of neurons and glia and this approach can be useful for identifying 
global consistent dysregulation in depression. However, with the emergence of high throughput single cell 
RNA-seq, complementary approaches of global versus single cell RNA changes will be important in refining 
an understanding of depression. Further, different forms of depression occur, including typical and atypical, 
and while the current study does not distinguish among these, in future studies it would be beneficial to 
develop different portraits for different versions of depression.

3)	 Caution should be used for evaluation of possible treatments given that the expression studies varied widely 
across multiple factors, including sex, species, numbers, brain region, treatment length (some were acute, 
some were chronic for months), and platform (microarray or RNA-seq). Thus, for use of current and future 
treatment datasets, an understanding of experimental design is relevant for interpretation.

4)	 A potentially useful step could involve use of the depression portraits to evaluate and identify what animal 
model has the highest concordance with the depression brain signature. This approach includes comparing 
the portraits for depression with gene expression patterns from various animal models (e.g., transgenics, 
stress exposure). While there is some debate about whether there is or ever can be a good animal model for 
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depression74,75, identification of a model that closely matches the portraits for depression would be of use. 
In only a few of the 200+ treatments was the treatment analyzed in the context of a model that included 
depressive-like characteristics. With the right model, in future studies one could evaluate treatments that 
reverse a preexisting dysregulated expression pattern that matches depression in humans.

5)	 A goal of producing a portrait for depression is to gain new insights into depression but also to produce a 
platform for evaluating and identifying promising new treatments. Here, antidepressants performed well, 
but there is ongoing concern about treatments that themselves create issues, including adverse effects with 
withdrawal as can occur with venlafaxine76. A potentially promising approach is to identify multiple com-
plementary treatments whereby each treatment itself has a positive impact and risk of withdrawal effects are 
low. By examining large-scale gene expression alterations with treatments and combinations of treatments 
against the depression portrait, it is possible there is a path forward for understanding and identifying new 
treatments for depression.

Methods
Creation of gene expression portraits of depression.  An overview of the “Methods” is provided in 
Supplementary Fig. 1. I began by identifying publicly available large-scale gene expression datasets from the 
CNS of depressed and control individuals within Gene Expression Omnibus and if possible, I used the GEO2R 
tool to produce a differential gene expression (DGE) for each study77. Supplementary Table 1 provides a list of all 
datasets used. For GSE102556 the datatype (RNA-seq) could not be analyzed by the GEO2R tool, the dataset was 
not available for analysis in the GEO RNA-seq Experiments Interactive Navigator (GREIN)78, and the original 
publication did not include a full DGE listing. Therefore, I ran analysis on the raw data using EdgeR79 to produce 
a DGE list for each sex and brain region. Top differential genes were similar, but not identical to the original 
publication4 likely due to differences in the settings used within EdgeR. A DGE list provides a list of genes sorted 
by p value from most to least significantly dysregulated for a given study. It also provides information on the 
direction of change. For this study, a positive sign indicates that a gene is upregulated in depression, whereas a 
negative sign indicates downregulation. As a next step, the p value for each gene was − log10 transformed (e.g., 
a p value of 0.000001 becomes 6), so that lower p values become larger positive numbers. This number was then 
multiplied by the sign of the direction of change. Therefore, a significantly upregulated gene may be noted by a 
6, while a downregulated gene may be noted by a − 6. Each expression study was converted to a single file with 
two columns, one for Gene.symbol and the other called sign1, which provides the information on significance 
and direction of change. This approach is used because it is the standard for preparing data for conducting rank 
rank hypergeometric analysis22. As a next step, I updated the HUGO gene symbols for each dataset. This is nec-
essary because the datasets were produced at different time points and the annotations for human genes have 
been regularly changing. I ran into the issue that older datasets with certain problematic older symbols, such as 
MARCH3 (now called MARCHF3), are turned into calendar dates if the data are opened in Excel80. To perform 
this gene symbol update, I created a list of older gene symbols along with the corresponding updated symbol 
and included script to catch any symbols that may have been inadvertently turned into a date. I also identified a 
subset of gene symbols that are difficult for updating because at some point a currently valid symbol was turned 
into another currently valid symbol. To address this issue I avoided updating any currently valid gene symbol. 
The script in R and files for updating the gene lists used in this study are available upon request.

For the creation of each portrait, I used the datasets indicated in Supplementary Fig. 1 and Supplementary 
Table 1. A few of the datasets were excluded and the rationale was to mitigate the effect of overrepresentation of 
the same individuals and to exclude a dataset that included only about half of the normal number of genes; see 
Supplementary Table 1 for details. The following number of datasets was used: combined portrait (29 datasets), 
male portrait (13 datasets), and female portrait (13 datasets). After formatting each dataset as describe above, 
I then combined all relevant datasets based on gene symbol. As part of this process I began by ranking genes 
within each dataset based on upregulated genes and ranked them from low to high (e.g., 1 = most significantly 
upregulated gene; the largest number = the most significantly downregulated gene). I removed any gene if more 
than a third of the datasets had missing values. For any remaining missing values I entered the mean of the final 
gene count. The rationale is that with the mean rank, these values will be ignored when evaluating the top up 
and downregulated genes. Using a cutoff at 1000 increments, I began by examining each gene and counting how 
many datasets it received a count of 1000 or lower. I then used the same approach to count 2000 or lower and 
continued in this manner up to 8000 or lower. I then focused on downregulated genes so that now the ranking 
is based on downregulated genes (e.g., 1 = most significantly downregulated gene). I used the same format of 
counting as for upregulated genes. For example, I counted how many times a given gene was in the top 1000 
downregulated genes, the top 2000 genes, up until 8000.

The idea of the portrait is to identify the top dysregulated genes in depression based on significance and con-
sistency of direction of expression change in a certain direction. Given this, I created a scoring system for each 
gene using the data from above in multiple stages. First, I took the score of the number of datasets in which a 
particular gene was in the top 1000 for upregulation. For example, for the combined portrait for the gene, RPS23, 
this was 13 datasets so the score was 13. I then subtract the number of times the gene occurred in the top 1000 
downregulated genes. For RPS23 this was zero. By subtracting the downregulated number from the upregulated 
number, the starting score for RPS23 in the combined portrait was 13.0. For EGR1, though, the number was 0 for 
top 1000 upregulation (i.e., there were no cases where EGR1 was in the top 1000 upregulated genes) and 16 for 
top 1000 downregulation, so the starting score was − 16.0. The idea is that the genes that rank highest (most posi-
tive) and lowest (most negative) are those that are consistently different in a certain direction. If a gene is found 
in the top 1000 upregulated genes in 5 lists, but downregulated in the top 1000 in 5 lists, then these will cancel 
out and its starting score would be zero. In order to expand the analysis to the top 2000 up or downregulated 
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genes, I counted how many times a gene met that criterion, but then multiplied it by 0.1, so that its impact was 
tenfold less than for the top 1000 genes. For the top 3000, I used the same approach, but now multiplied by 0.01, 
so it was reduced by a factor of 10 again. I continued in this approach up until the top 8000 up or downregulated 
genes. I then added all the numbers for a given gene. For RPS23, the final number was 14.76545 and for EGR1 
it was − 17.8769231. Thus, the numbers in the portrait provide information back into how it was represented 
among the starting datasets. As a final step I sorted the genes by the absolute value so that the final list contains 
all genes ordered by magnitude of the difference from controls and then added information on direction of 
expression change (up = positive sign, down = negative sign). I provide script that runs in R and all the starting 
datasets needed to replicate creation of the portraits are both publicly available and available upon request. 
The output in this format allows for portraits to be compared with the original datasets, with one another, and 
with treatments (see below); also the format can be easily used for RRHO analysis22. In Supplementary Table 1, 
I provide an output from R just prior to creation of the final combined portrait so the reader can examine any 
gene in detail. Using this approach, I created three portraits for depression; one that included both men and 
women (combined portrait), one for males only (male portrait), and one for females only (female portrait). The 
complete portraits, plus lists of the top 1000 upregulated genes, the top 1000 downregulated genes, and the top 
1000 overall dysregulated genes are provided for each portrait in Supplementary Table 1.

An alternative approach to create a depression portrait was also explored using the newly developed tool, 
MetaVolcano11. The output from MetaVolcano is provided in Supplementary Table 1 along with a comparison 
to the current findings. Key differences in approach are that MetaVolcano includes a focus on specific p values 
and fold change levels, whereas the present study uses p value for ranking and fold change for direction and each 
round of analysis involves the same number of genes from each study. Thus, a difference is that MetaVolcano may 
emphasize genes with particularly low p values or high fold change from a subset of studies whereas the current 
approach uses a ranking system so each dataset contributes equally to the final model. Further, MetaVolcano 
maintains all genes in final output whereas this study only evaluates genes present in more than two thirds of 
the samples.

Testing individual depression datasets against the three portraits and one another.  Each orig-
inal depression dataset was evaluated with the three portraits using a rank rank hypergeometric approach com-
paring the top 1000 upregulated and top 1000 downregulated genes from each dataset. From these comparisons I 
determined the p value and then used the − log10 (p value) transformation so that lower p values are represented 
by higher positive numbers. I used the labeling system as used in the rank-rank hypergeometric publications of: 
A, upregulated in both groups; B, up in first group, but down in second; C, down in first group, but up in second; 
D, downregulated in both groups22. I then created a score where the output of A (up in both) and D (down in 
both) were added together and then the outputs of B (opposite directions) and C (opposite directions) were sub-
tracted to provide a final score. Portraits were compared against one another using the same approaches as above 
to provide insights into how well the male and female portraits matched the combined portrait and to identify 
sex differences. The outputs of all comparisons with the individual depression datasets with the three portraits 
are provided in Supplementary Figs. 2 and 3 and Supplementary Table 1. I also provide a script that runs in R 
for conducting the comparisons.

Control portrait.  In order to evaluate whether the portraits were capturing a consistent biological signa-
ture, I selected 12 depression datasets (5 male, 5 female, and two combined sexes) and created a new depression 
portrait based on reduced input. Importantly, none of these were from the same individuals so patterns, if any, 
should emerge from a biological signature. Then, within each dataset, I randomized how the genes and data 
were associated and created a control random portrait based on the randomized data. I then compared each of 
the respective starting components against the respective portraits using approaches above to see how well the 
model fit. The creation and analysis of the random portrait was repeated 10 times and the results averaged. A 
one-way ANOVA was performed on the overall scores between the new depression portrait and random por-
trait. Data used and results are provided in Supplementary Table 1.

Analysis of the top dysregulated genes.  Enrichment analysis for significance (p < 0.05) was conducted 
using ToppCluster19, Enrichr20, and STRING18 on the top 1000 dysregulated genes in the three portraits. I used 
the cutoff of 1000 because this is expected to reflect a biological signature and multiple MDD expression data-
sets have over 1000 significantly dysregulated genes. The reader is encouraged to explore results using different 
cutoffs. The top 1000 gene lists are provided in Supplementary Table 1 and can be entered into enrichment tools. 
Results from some of the enrichment tests, including from ToppCluster, are provided in Supplementary Table 1. 
I also entered subsets of genes that were enriched in certain pathways (e.g., MAP kinase and BDNF signaling) 
into STRING to gain insights into protein interaction networks18.

Analysis of GWAS depression genes with the combined portrait of depression.  268 genes from 
a recent GWAS analysis of depression21 were compared with the top 1000 dysregulated genes from the combined 
portrait to identify common overlapping genes (N = 14) and lists were compared using a hypergeometric test. 
Further, the 268 GWAS genes were analyzed in STRING and the genes with the highest connections with one 
another (at least 4 gene–gene interactions) were identified (N = 55). The same approach was used for the top 
1000 portrait genes to identify the top interacting genes (at least 19 gene–gene interactions) (N = 124). These 
two sets of genes along with overlapping genes were entered together into STRING to evaluate interactions and 
perform enrichment analysis.
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Collation and preparation of potential treatment datasets.  An overview of the approach used is 
provided in Supplementary Fig. 4. In order to identify potential treatments for depression I used two drug repur-
posing tools, NIH LINCS L100081 and Enrichr20. The drug repurposing approach of sign matching is based on 
the premise that if one knows the direction of change of gene expression in a disorder and one knows the direc-
tion of gene expression change produced by a treatment, then one can identify treatments that move expression 
of the genes in the disorder back to the neurotypical state. In L1000 I entered 1000 genes upregulated and down-
regulated for each portrait and used the reverse feature to identify drugs that could reverse the gene pattern. 
For Enrichr, I used the Crowd feature and entered the upregulated and downregulate genes in separate sessions 
and retrieved results from the appropriate Drug Perturbations from GEO output. For example, for an input of 
upregulated depression genes, I extracted results from GEO down. For both tools, many of the datasets used are 
not neural tissue (e.g., a breast cancer cell line). I used the results from both approaches to create a starting list of 
potential treatments, but then went to GEO datasets77 and searched for and analyzed only studies that had been 
performed using CNS or related tissue (e.g., neuronal stem cells) so that the treatment would have relevance to 
CNS dysregulation in depression. Only datasets with a minimum of three per group were used. Not all potential 
treatments (for example, imatinib) had datasets from the CNS, so these could not be explored further. The two 
drug repurposing tools had some limitations as they did not include certain types of datasets such as exercise 
(or wheel running in rodents) effects on expression changes. I added to my search any additional treatment that 
had some evidence for a potential therapeutic effect on depression (such as exercise). Many of these studies were 
not specifically looking at potential treatments for depression, but were examining an experimental treatment 
in a different context. A majority of the datasets were from mice and rats, but other datasets were from humans, 
non-human primates, and neuronal tissue, including neuronal cell lines. A full list of all treatments tested is 
shown in Supplemental Table 2. When possible, I used the GEO2R tool (designed to work with microarray data) 
to obtain a differential gene expression output. RNA-seq analysis was in some cases performed using GREIN if 
the datasets were available78. Together, I processed over 200 datasets. As a final step, I used the same approach 
of transforming the p value via the –log10 approach and multiplied this by the sign of direction of change so the 
formatting is identical to that for datasets used in the creation of the portraits. The treatment datasets are publicly 
available and versions that are formatted for use with the software tools provided are available upon request.

Use of portrait to identify potential treatments.  I tested each potential treatment dataset separately 
against the three portraits using a rank rank hypergeometric approach comparing the top 1000 upregulated and 
top 1000 downregulated genes from each dataset. This approach was similar to the one used above for evaluation 
of individual depression datasets to the portraits. Here, though, I created a final score where the potential thera-
peutic effects were first summed: outputs of B (treatment reversed genes down in depression) and C (treatment 
reversed genes up in depression). I then subtracted effects where treatment could be viewed as worsening the 
state of depression, namely output of A (treatment upregulates genes already up in depression) and D (treatment 
downregulates genes down in depression), to get a final score with a higher positive number reflecting higher 
potential reversal of depression profiles. Thus, a treatment that reversed a high number of depression portrait 
genes, but had little effect on pushing genes in the same direction would receive a high score. The outputs of 
all comparisons with the individual depression datasets with the three portraits are provided in Supplementary 
Table 2. I provide a script that runs in R for conducting the comparisons. I also provide script in R that allows one 
to easily compare a given treatment with a given portrait, to identify the specific genes modified by the treatment 
that are dysregulated in depression. The focus on the top 1000 upregulated and top 1000 downregulated genes 
across treatments allowed for a uniform comparison between treatments and is consistent with the approach by 
Enrichr that examines 500 genes. I explored using RRHO22 for treatment to treatment comparisons, but this can 
provide a disparity in cutoffs. For example, for one treatment RRHO may examine 5000 up-up genes and 100 
up-down genes, but for a different treatment vastly different cutoffs may be used. Thus, comparison among over 
200 treatments is difficult and the planned set cutoffs were used. Further, RRHO is designed for use with two 
gene expression datasets and while the portraits are formatted in a manner consistent with a gene expression 
study, they are not expression results per se. However, the data are formatted to work with RRHO and script for 
use in R is provided to produce an output between any treatment and any portrait that then can be entered into 
RRHO for analysis. I used the heatmap output from RRHO to highlight the reversing of depression expression 
by some of the treatments with portraits and this is also useful when examining patterns outside of the top 1000 
up or 1000 downregulated genes.

Uniform Manifold Approximation and Projection (UMAP) analysis.  UMAP23 was used as alterna-
tive exploratory approach to gain insights into the performance of some of the top treatments. UMAP incorpo-
rates data from complex landscape of multidimensional features (e.g. genes), flattens those to two dimensions 
to identify similarities or differences between datasets. I used some of the top treatments and the portraits, 
but I reversed the sign of the portraits so that if a theoretical treatment perfectly reversed all gene expression 
aspects for a portrait, it will now perfectly match (or be closely aligned with spatially) that portrait. Hence, the 
closer treatments are spatially to portraits, the better the reversal and potentially better treatment. For the analy-
sis shown, the neighborhood size was set for two different sizes and the correlation clustering tool was used. 
Because UMAP works well with higher dimensions, 4020 genes were used and these were derived from the top 
1000 up and 1000 down regulated genes from the three portraits.

Data availability
All original datasets are publicly available datasets as indicated. Datasets were transformed and reformatted as 
indicated and those versions that were used in this study are available upon request. Script is provided to allow 
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for replication of results and modification of script. Output files are also provided in Supplementary Information. 
Any additional information can be received from the author by request.
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